CdTe quantum dots prepared using herbal species and microorganisms and their anti-cancer, drug delivery and antibacterial applications; a review

Akbari, M. and Rahimi-Nasrabadi, M. and pourmasud, S. and Eghbali-Arani, M. and Banafshe, H.R. and Ahmadi, F. and Ganjali, M.R. and Sobhani nasab, A. (2020) CdTe quantum dots prepared using herbal species and microorganisms and their anti-cancer, drug delivery and antibacterial applications; a review. Ceramics International, 46 (8). pp. 9979-9989.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....
DOI: UNSPECIFIED

Abstract

One of the developing areas of nanotechnology is the production and application of nanoscale materials, with large surface/volume ratios, which provides them with the specific properties. Cadmium telluride (CdTe) is a typical nanomaterial, which has been the subject of various studies due to its large bandwidth and excitation binding energy, which make it suitable for various purposes like anti-inflammatory, wound healing, antioxidant, antifungal and antibacterial applications. The large quantities of toxic chemicals and harsh conditions required for preparing CdTe, led to great interest in developing green methods for its synthesis. This review provides a comprehensive overview of the research on the green biological synthesis of CdTe. It is also important to consider the increasing interest in the area of production of CdTe QDs (Quantum dots) for drug delivery, bioimaging and anti-cancer applications. One green approach for producing CdTe nanocrystals is the application of metabolic activity of living organisms. Intra and extra-cellular biosynthesis can occur through a biomimetic approach based on feeding organisms with cadmium and telluride precursors. Yet there are huge gaps in our knowledge on the toxic effects of nano-scale CdTe particles on single organisms and the mechanism there of and to guarantee the safe application of CdTe, further work needs to be done on assessing the long-term effects of nano-sized CdTe particles at low quantities. © 2020 Elsevier Ltd and Techna Group S.r.l.

Item Type: Article
Additional Information: cited By 0
Uncontrolled Keywords: Binding energy; Biochemistry; Biomimetics; Biosynthesis; Controlled drug delivery; Diseases; Drug delivery; II-VI semiconductors; Nanocrystals; Nanostructured materials; Semiconductor quantum dots; Targeted drug delivery, Anti-cancer; Antibacterial; Bio-imaging; CdTe quantum dots; Green method, Cadmium telluride
Subjects: Chemistry
Pharmacology, Toxicology and Pharmaceutics
Divisions: Faculty of Medicine > Basic Sciences > Department of Pharmacology
Depositing User: ART . editor
Date Deposited: 27 Jun 2020 14:41
Last Modified: 27 Jun 2020 14:41
URI: http://eprints.kaums.ac.ir/id/eprint/4906

Actions (login required)

View Item View Item