Abstract
Astrocytic gliomas are the most common and lethal form of intracranial tumors. These tumors are characterized by a significant heterogeneity in terms of cytopathological, transcriptional, and (epi)genomic features. This heterogeneity has made these cancers one of the most challenging types of cancers to study and treat. To uncover these complexities and to have better understanding of the disease initiation and progression, identification, and characterization of underlying cellular and molecular pathways related to (epi)genetics of astrocytic gliomas is crucial. Here, we discuss and summarize molecular and (epi)genetic mechanisms that provide clues as to the pathogenesis of astrocytic gliomas.

Keywords: astrocytic glioma, molecular mechanism, therapy.

studies. By examining 39 cases of familial gliomas, they found that 60% of them were suffering sisters and brothers (Vieregge et al. 1987).

The presence of a genetic predisposition can play a significant role in the emergence and development of gliomas. For example, neurofibromatosis type I (NF1) and NF2, Li-Fraumeni syndrome, ataxia-telangiectasia, Turcot syndrome, tuberous sclerosis, Maffucci syndrome, and Gorlin syndrome can contribute to the occurrence and development of gliomas. Gliomas can be detected by the specific features of the created glioma and the position of its formation. For example, pilocytic astrocytoma of the optic nerve is common in neurofibromatosis type I. However, in neurofibromatosis type II, spinal cord ependymoma is more likely to occur (Lewis and Ketcham 1973; Kibirige et al. 1989).

The neurofibromin protein resulting from the expression of the NF1 gene as a potent tumor suppressor plays a role in the negative regulation of the signal transduction of RAS and mTOR in astrocytes. NF1 gene mutations are more common in mesenchymal glioblastoma subtypes (Hamilton et al. 1995; Zhu et al. 2005). Gliomas are seen in Turcot syndrome that mainly characteristic of which is the creation of primary neuroepithelial tumors of the central nervous system. However, the somatic mutations of the APC gene are rare in primary brain tumors so that no somatic mutations were detected in 91 cases of neuroepithelial tumors including gliomas (Mori et al. 1994). Glioblastomas produced in patients with Turcot syndrome, which are caused by mismatch repair gene mutations, can have high survival (Iuzzolino et al. 1994). There is no any clinical trial or case report where knowledge of a particular mutation or epigenetic modification has had therapeutic value for the patient.

Astrocytoma and glioblastoma

Definition and features of tissue pathology

In terms of definition, astrocytoma is a general term which is used for diffused infiltrated tumors, including differentiated neoplastic astrocytes (Hayat 2012). Astrocytomas or astrocytic gliomas can be divided into two main groups including: (i) a group which is more prevalent and consists of diffused infiltrated tumors. Astrocytoma, anaplastic astrocytoma and glioblastoma are included in this group, and (ii) a group which is less prevalent and consists of growth-restricted tumors. Pilocytic astrocytoma, pleomorphic xanthoastrocytoma, subependymal giant cell astrocytoma, and Turcot syndrome are included in this group (Gladson et al. 2010; Hayat 2012).

Despite the slow growth of astrocytomas, since these tumors tend to infiltrate and diffuse around the brain, even the types in which the cells are well differentiated (grade II of histology) tend to recur. Malignant anaplastic astrocytoma exhibits an anaplastic diffused process. Increased cellularity, pleomorphism, unusual nucleus, and mitotic activities are some evidences for this claim (astrocytoma is responsible for creating grade III of histology).

Glioblastoma, which is known as the most common primary malignant tumor of the brain, as well as the most malign and most common type of glioma (about 50% of the total gliomas), annually affects about 10 000 people. The average survival rate of these persons is between 12 and 15 months (Weary et al. 1972; Kibirige et al. 1989; Russel and Rubinstein 1989).

Glioblastomas are anaplastic tumors, which often have cells with very small differentiation, conic, round or pleomorphic shapes and sometimes have multi-nucleus giant cells. The presence of parameters such as prominent angiogenesis or necrosis is essential for histological diagnosis of these tumors. Histologically, glioblastomas are responsible for creating grade IV (Weary et al. 1972).

The incidence of astrocytoma and glioblastoma in adults is higher compared to children. These tumors in adults have about 17% of the brain’s primary tumors. However, this is only 4% in children (Weary et al. 1972). As noted above, glioblastomas can occur at different ages, but the incidence rate varies in different ages. The highest incidence of glioblastomas is between the ages of 45 and 60 years. Using computed tomography and magnetic resonance imaging, these tumors have a ring-like structure with a low density (necrotic) center surrounded by a ring of contrast-enhancing vital tumor tissue and edema (Burger and Green 1987; Kleihues et al. 2002).

Macroscopic appearance of typical glioblastomas is like large necrotic masses with a peripheral area of the fleshy gray tumor tissue. Intra-tumor bleeding is common in them. Since glioblastomas can display a range of cell and tissue differentiation patterns, the differentiation of these tumors is very difficult or even impossible in histology aspect. However, genetically, they can be divided into distinct primary and secondary tumors. Primary glioblastomas are more common in older people (usually older than 50). Usually, after a short clinical history (less than 3 months), without clinical and tissue evidence of a less malignant precursor lesion, they appear to be a new phenomenon. However, the incidence of secondary glioblastomas in younger patients (usually less than 45 years) is higher. They are associated with the progression of malignancy from grade II or III of astrocytoma. The duration of tumor progression can vary between a period of less than 1–10 years (with a mean interval of 4–5 years) (Kleihues et al. 2002). Clinical prognosis of patients with glioblastoma is very poor and the average survival time after surgery is only 12 months (Burger and Green 1987).

Molecular genetics of astrocytic gliomas

Several molecular mechanisms can lead to the development of gliomas and the formation of more malignant tissue features as well as the recurrence of the disease. Some of these mechanisms include gene amplification, rearrangement, and deletions. The outcome of these mechanisms is the dominant activity of oncogenes, as well as the recessive inactivation of suppressive genes.

**EGFR**

One of the most common genes that is over-expressed in primary glioblastomas is epidermal growth factor receptor (EGFR) gene. Over-expression of this gene has been observed in 60% of cases and amplification of gene occurs in 40% of cases (Ekstrand et al. 1992). EGFR abnormalities are specifically associated with glioblastoma multiforme (GBM), and EGFR amplification is associated with a decrease in the average survival rate of patients (Hurt et al. 1992). The gene encoding EGFR is located on chromosome 7. A frequent observation of trisomy 7 in glioblastoma can be an evidence for the link between EGFR amplification and GBM (Agosti et al. 1992).

EGFR is structurally a transmembrane protein with tyrosine kinase activity that contains an extracellular domain attached to EGF and transforming growth factor alpha (Fig. 1). The autocrine interaction of this receptor with its ligand can lead to increased cell proliferation (Agosti et al. 1992; Hurt et al. 1992; Sjöström et al. 2010). Meanwhile, EGFR VIII is concurrently expressed as a mutated receptor in 50% of glioblastomas with amplification of EGFR (Ekstrand et al. 1992; Aldape et al. 2004; Mellinghoff et al. 2005). This EGFR variant powerfully and continuously contributes to the activation of signaling pathway of the phosphatidylinositol 3' kinase (Fig. 1) (Choe et al. 2003; Li et al. 2004; Sordella et al. 2004).

In a study on tumors of 58 patients with glioblastoma, von Deimling et al. showed that EGFR gene amplification is only observed in tumors which lack chromosome 10. This suggests that the lack of chromosome 10 can be a cause for the incidence of EGFR abnormality in the tumor progression process (Louis et al. 1992). In addition to over-expression and amplification of the EGFR gene, rearrangements and deletions of this gene can also be one of the causes of the ligand’s abnormal connection (Ekstrand et al. 1991; Wu et al. 1993).

Most of the rearrangements are the deletions which involve the 5' end of the gene. This part of the gene encodes the extracellular domain of protein. The 3' end of the gene that encodes the intracellular domain is rarely affected (Louis et al. 1993). The most common rearrangement is an 801 bp inframe deletion which results in an incorrect splicing of exons 1–8. As a result of this false splicing, the receptor molecule is incompletely expressed. The resulting receptor lacked some sections of the extracellular domain that are necessary for binding to the ligand. The functional feature of this type of EGFR is the continuous activity of tyrosine kinase, which is likely to increase tumorigenesis in human glioma cells (Collins 1995).

One potential explanation for the failure of EGFR and platelet derived growth factor receptor alpha inhibitors to exert remarkable clinical effects is that other receptor tyrosine kinases may crosstalk to make an integrated signaling threshold that is not effectively mitigated through the inactivation of any single receptor tyrosine kinase (Lu et al. 2009; De Witt Hamer 2010). In a study on pilocytic astrocytoma (the most common type of astrocytic tumors in children), there was no change in the EGFR gene and absence of alleles in chromosomes 10, 17p, and 19q was reported (von Deimling et al. 1993).

**Murine double minute 2**

Over-expression and amplification of the murine double minute 2 (MDM2) gene were reported in a number of primary glioblastomas. The product of this gene can form a complex with P53 and inhibit its function (Fig. 1) (Finlay 1993; Biernat et al. 1997; Wang et al. 2011). In their studies on 157 primary brain tumors, Reifenberger et al. found that MDM2 gene is amplified and over-expressed in 8–10% of the anaplastic astrocytomas and glioblastomas. In addition to examining this mutation, the TP53 gene was also studied. No mutation in TP53 gene or LOH in 17p was detected in these tumors. This suggests that the amplification of the MDM2 gene may be an alternative mechanism for abnormally regulated growth control by P53 protein (Reifenberger et al. 1993; Schiebe et al. 2000; Wang et al. 2011).

Reifenberger et al. also showed that 15% of glioblastomas and astrocytomas have chromosomal amplification of 12q13–14. Another major finding of their research was that some tumors that did not have MDM2 gene amplification in their genome, had genetic amplification for the CDK4 and SAS genes (Reifenberger et al. 1994). It was reported that MDM4 gene is genetically amplified in gliomas which lack both TP53 mutation and MDM2 gene amplification (Riemschneider et al. 1999).

**P53**

P53 tumor suppressing gene (Fig. 1) mutations and over-expression of platelet-derived growth factor ligands in secondary glioblastomas have been observed (Kleihues et al. 2002). The presence of P53 mutation in mild astrocytomas causes tumor tendency for progressive and aggressive growth (Ohgaki et al. 1993; England et al. 2013). The survival rate estimated by Kaplan–Meier method for patients with P53 mutation was 21% 5 years after diagnosis, whereas it was 46% for patients with tumors lacking P53 immunoreactivity. (Ohgaki et al. 1993).
MGMT (methyl-guanine methyl transferase) and methylation

Methyl-guanine methyl transferase (MGMT) gene, located on the chromosome 10q26, is involved in the removal of alkyl groups from the O6 position of guanine by the production of a protein involved in DNA repair. Thus, the high activity of MGMT reduces the therapeutic effects of alkylating agents. The lack of expression of MGMT can be caused by epigenetic silencing of MGMT gene promoter via methylation (Taylor and Schiff 2015). In a study on 206 glioblastomas, the promoter methylation of this gene occurred in 45% of cases, which led to the promoter’s silencing of the gene and consequently its lack of expression. This change led to a significant increase in the overall survival rate from 12.2 months (in patients without promoter methylation) to 18.2 months (in patients with promoter methylation). In addition to the benefit of increasing the survival rate, patients with MGMT methylated promoters benefit from a combination of chemotherapy (by an alkylating agent such as temozolomide) and radiotherapy (with an survival of 21.7 months) compared with radiotherapy alone (with an average survival of 15.3 months) (Hegi et al. 2005; De Salvo et al. 2011; Juratli et al. 2012; Johnson et al. 2014).

MicroRNAs

Among several factors which are involved in the initiation and progression stages of astrocytic gliomas, microRNAs (miRNAs) have emerged as epigenetic regulators and play key roles in the pathogenesis of many diseases such as

astrocytic gliomas (Sato et al. 2011; Nikaki et al. 2012) (Gholamin et al. 2016, 2018; Mirzaei et al. 2016a,c,e, 2018a,b; Mirzaei 2017; Rashidi et al. 2017a,b; Hoseini et al. 2018; Jamali et al. 2018; Moridikia et al. 2018; Rabieian et al. 2018). miRNAs are short non-coding RNAs which are involved in many biological processes such as growth, development, angiogenesis, and differentiation (Fathullahzadeh et al. 2016; Mirzaei et al. 2016b, 2017b; Mohammadi et al. 2016; Saadatpour et al. 2016; Salarinia et al. 2016; Keshavarzi et al. 2017a,b; Golabchi et al. 2018; Keshavarz et al. 2018; Mashreghi et al. 2018). Increasing evidence has indicated that miRNAs are associated with the initiation and progression of several diseases such as cardiovascular disease, stroke, diabetes, and cancer (Mirzaei et al. 2016d, 2017a; Banikazemi et al. 2018; Golabchi et al. 2018; Jafari et al. 2018; Masoudi et al. 2018; Saeedi Borujeni et al. 2018; Simonian et al. 2018; Tavakolizadeh et al. 2018). Previously, we showed that a variety of miRNAs are involved in glioblastoma pathogenesis (Masoudi et al. 2018). It has been revealed that deregulation of miRNAs in various cells associated (i.e., astrocytes, and microglia) with gliomas could contribute to the progression of astrocytic gliomas (Malzkorn et al. 2010; Yang et al. 2014). In a study, Conti et al. (2009) assessed the expression levels of various miRNAs (i.e., miR-21, miR-221, miR-128a, miR-128b, miR-128c, miR-181a, miR-181b, and miR-181c) in human astrocytic tumors. Their results indicated that miR-21 and miR-221 are up-regulated in glioma samples, while miR-181b is down-regulated when compared with normal brain tissue. Moreover, miR-21 was up-regulated in all tumor samples, whereas higher levels of miR-221 were observed in high-grade gliomas. These results suggested that the deregulation of various miRNAs could be associated with different stages of astrocytic gliomas (Conti et al. 2009).

Recently, Mao et al. (2017) reported a molecular classification of astrocytic tumors. Their results indicated that there are 11 795 DNA methylation sites, 3627 genes, 3334 IncRNAs, and 136 miRNAs that are involved in astrocytic tumors. Moreover, they observed that some genes (i.e., ANK3, TSPYL5, RAB3A, and ABCA2) are hypermethylated which lead to their decreased expression in astrocytic tumors (Mao et al. 2017).

Other genetics alteration
Astrocytic tumors, like other tumors, show genetic heterogeneity. Different genetic factors from chromosomal changes to molecular changes have been identified in astrocytic tumors. These factors are grouped by chromosome in Table 1, Fig. 2.

Mutation in isocitrate dehydrogenase (IDH) is one of major molecular alterations which involved in the pathogenesis of grade glioma. IDH1 or IDH2 mutation is observed that have occurred in more 90% of astrocytomas and oligodendrogliomas. Besides IDH, ATRX gene mutation is other important mutations which could be detected employing immunohistochemistry as loss of nuclear ATRX expression (Chatterjee et al. 2018). In a study, Chatterjee et al. (2018), assessed the frequency of IDH1, ATRX, and BRAF V600E mutations in 80 patients (including 25 diffuse astrocytoma, 25 glioblastoma, 15 pilocytic astrocytoma, and 15 anaplastic astrocytoma) with grade astrocytomas and their prognosis value. Their results indicated that all patients with pilocytic astrocytoma and primary glioblastoma were negative for IDH1 mutation. Moreover, low expression of nuclear ATRX was observed in 87% (20/23) and 100% (14/14) DA and AA patients, respectively. BRAF V600E mutation was not diagnosed in any astrocytic tumor. Their findings proposed that IDH1 and ATRX mutations are commonly associated with diffuse astrocytoma and anaplastic astrocytoma, while they are rarely observed in patients with pilocytic astrocytoma and glioblastoma (Chatterjee et al. 2018).

In a study, Chen et al. (2016), indicated that mutations or epigenetic modifications of IDH1 can provide a survival advantage to glioma patients. Their results demonstrated that these mutations improve overall patient survival though decreasing the ability of cells to produce nicotinamide adenine dinucleotide phosphate, and consequently lowers the capacity of the cell to scavenge oxygen species. These events could make the tumor cells more susceptible to irradiation and chemotherapy (Chen et al. 2016).

CDKN2/p16 is main deletion which is observed in various gliomas tumors. P16 is an important regulator which is able to control a cell cycle cascade and includes cyclin-dependent kinase 4 (cdk4), cyclin D1, and pRb. It has been observed that deregulation of each of these proteins are associated with primary human GBM or in GBM cell lines (Purkait et al. 2015). In a study, Miettinen et al. (1999), assessed the association of CDKN2/p16 expression and cell proliferation activity and survival rate of patient with oligodendrogliomas and astrocytomas. They showed that expression of CDKN2/p16 was reduced in grade II and anaplastic oligodendrogliomas (17/42) and low CDKN2/p16 expression was related to high histologic cancer grade. Moreover, they indicated that protein levels of CDKN2/p16 were reduced in glioblastoma (9/10), anaplastic astrocytomas (5/9), grade II astrocytomas (3/10) and in none of pilocytic astrocytomas (0/7). Their results revealed that low expression of CDKN2/p16 was also related to high cell proliferation activity and poor survival rate in patient with astrocytomas. Their findings proposed that loss of CDKN2/p16 expression could have main roles in the progression of oligodendrogliomas and CDKN2/p16 immunocytochemistry could be employed as a biomarker in oligodendrogliomas and low-grade astrocytomas (Miettinen et al. 1999).

The Deleted in Malignant Brain Tumors 1 (DMBT1) is other gene which involved in astrocytic gliomas pathogenesis. DMBT1 is a region of chromosome 10q25.3-q26.1 and its
<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Product</th>
<th>Features</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MDM4</td>
<td>Murine double minute 4</td>
<td>p53 regulator, Amplified in gliomas lacking TP53 mutations with lacking MDM2 amplification</td>
<td>Riemenschneider et al. (1999) and Furgason et al. (2015)</td>
</tr>
<tr>
<td>2q</td>
<td>IDH1</td>
<td>Isocitrate dehydrogenase 1</td>
<td>Encodes an enzyme in the citric acid cycle, Somatic mutations have been seen in 12% of glioblastoma multiforme (GBM) tumors, Mutations:</td>
<td>Balss et al. (2008), Capper et al. (2009), Hartmann et al. (2009, 2010) and Ohgaki and Kleihues (2013)</td>
</tr>
<tr>
<td>4q</td>
<td>PDGFRA</td>
<td>Platelet-derived growth factor receptor alpha</td>
<td>Initiates signal of mitogensis, Amplification in up to 17% of GBMs, Detected in all four subtypes, Changes are more common in the proneural subtype</td>
<td>Fomchenko et al. (2011) and Lokker et al. (2002)</td>
</tr>
<tr>
<td>7</td>
<td>EGFR(7p)</td>
<td>Epidermal growth factor receptor</td>
<td>Chromosome 7 amplification is the most common change in glioblastomas (increase copy number of EGFR), Detected in 50–60% of GBM tumors, EGFRvIII: a aberrantly active version of EGFR with evades degradation and contributes to instability of genome, Alterations in EGFR are observed in all four tumor subtypes, EGFR change is a hallmark of the classic subtype</td>
<td>Burger and Fuller (1991), Howe et al. (1989), Verhaak et al. (2010), Li et al. (2014) and Furgason et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>CDK6(7q)</td>
<td>Cyclin-dependent kinase 6</td>
<td>Commonly up-regulated in gliomas, Amplification and over-expression or activation of Cdk6 related with human glioblastoma</td>
<td>Zhu et al. (2013) and Raub et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>MET (7q)</td>
<td>MET proto-oncogene (receptor tyrosine kinase)</td>
<td>The expression of MET associates with tumor grade, Amplifications of MET in glioma tumors are far less common than those of EGFR, In vivo inhibition of MET by antibodies resulted in reduction of tumor growth</td>
<td>Kong et al. (20090, Wu et al. (2011), Eckerich et al. (2007) and Martens et al. (2006)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Product</th>
<th>Features</th>
<th>References</th>
</tr>
</thead>
</table>
| 9p         | CDKN2A (MTS1) | p16 (p16INK4a)   | - Higher expression is related with a shorter time to recurrence of tumor  
- MET signaling contributes to drug resistance  
- May be critical to cancer stem cells  
- Mutations of CDKN2A have been recognized in astrocytoma, glioblastoma and melanoma  
- Deletions of one or two CDKN2A gene copies frequently take place in Glioblastomas  
- CDKN2A homozygous deletion in 41% and hemizygous CDKN2A loss in 28% of primary glioblastomas have been observed  
- In glioblastoma cell lines, the incidence of homozygous CDKN2A is even higher (up to 70%)  
- CDKN2A inactivation by point mutation or through methylation of 5' CpG island has been found in some glioblastomas  
- Deletions of chromosome 9p may occur in oligodendrogliomas and lower grade astrocytomas as well as malignant astrocytomas  
- The tumor cells with lack CDKN2A mutations characteristically have RB1 mutations  
- Analysis of molecular subtype of tumors reveals CDKN2A gene deletion is common (70%)  
- CDKN2A gene deletion take place in 95% of tumors with the classic subtype | Liggett and Sidransky (1998), Greene (1999), Schmidt et al. (1994), Ranjit et al. (2015), Urbschat et al. (2017), Sippl et al. (2018), Cerchietti and Melnick (2017) and He et al. (1994) |
| 10         | Monosomy 10 |                  | - Frequently detected in glioma tumors  
- Monosomy 10 is characteristically related with a more malignant histologic type  
- The incidence range of chromosome 10 loss in glioblastoma tumors in different studies is from 60% to more than 90% of the cases  
- Primary glioblastomas are characterized by loss of heterozygosity on entire chromosome 10, while secondary glioblastomas often illustrate LOH on chromosome 10q.  
- Loss of heterozygosity (LOH) on chromosome 10 is occurred in up to 80% of cases | Karlbom et al. (1993), Schrock et al. (1994), Yadav et al. (2009), Nakamura et al. (2000), Albarosa et al. (1996) and Fujisawa et al. (2000) |
Table 1. (continued)

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Product</th>
<th>Features</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMBT1</td>
<td>Deleted in malignant brain tumors</td>
<td>LOH on chromosome 10 is less common (approximately 40%) in anaplastic astrocytomas</td>
<td>Mollenhauer et al. (1997) and Sasaki et al. (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Located at distal 10q</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Intragenic homozygous deletions in DMBT1 were found in about 23% of glioblastomas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MXI1</td>
<td></td>
<td>Candidate gene that located at distal 10q</td>
<td>Eagle et al. (1995) and Wechsler et al. (1997)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Negatively regulate MYC oncoprotein function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MXI1 is a gene with potential tumor suppressor activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mutations of MXI1 have been discovered in prostate cancer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PTEN</td>
<td>Fig. 1</td>
<td>PTEN somatic mutations have been discovered in about 1/3 of glioblastoma tumors</td>
<td>Benitez et al. (2017), Furnari et al. (2007), Mellinghoff et al. (2005), Nagata et al. (2004), Bianco et al. (2003) and Bostrom et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Chromosome 10 deletions in region that containing the PTEN gene, frequently occur in tumors with EGFR amplifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mutations of PTEN are detected in 60% of glioblastoma multiforme (GBM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Deletions in the gene region are:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Far more common (occur in 85% of tumors)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Less common in the proneural subtype</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Loss-of-function mutations of PTEN are typically related with increased drug resistance and invasive actions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANXA7</td>
<td>Tumor suppressor gene annexin 7</td>
<td>Located at 10q22–23 region</td>
<td>Guo et al. (2013), Yadav et al. (2009), Bello et al. (1994)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ca²⁺ and phospholipid-binding protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Lack of expression of Anxa7 is associated with GBM tumors in late-stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The relatively higher Anxa7 levels potentially lead to longer survival for patients with GBM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Deletions in ANXA7 occur in 77% of tumors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mutations are detected in 6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Loss of heterozygosity of markers in 11p have been shown in malignant astrocytomas (except HRAS gene)</td>
<td>Fults et al. (1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Loss is identified in low-grade and high-grade glioma tumors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Probably these events plays a role in early tumorigenesis</td>
<td></td>
</tr>
</tbody>
</table>
### Table 1.

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Product</th>
<th>Features</th>
<th>References</th>
</tr>
</thead>
</table>
| 12         | CDK4     | Cyclin-dependent kinase 4 | - CDK4 amplification and over-expression are observed in glioblastoma tumors  
- Amplification has been detected in 15% of malignant gliomas  
- Tumors with wild type CDK4 are more probably to comprise RB1 mutations  
- Usage inhibitor of CDK4 kinase has potential for treating primary tumors of central nervous system such as glioblastoma | Furgason et al. (2015), Raub et al. (2015), Choi et al. (1970) and Reifenberger et al. (1996) |
|            | MDM2     | Murine double minute 2    | - A negative regulator of tumor suppressor p53  
- Amplification and over-expression of MDM2 gene have been seen in 8–10% of glioblastomas and anaplastic astrocytomas  
- Associate with worse survival | Bello et al. (1995), Toledo and Wahl (2007) and Reifenberger et al. (1993b) |
|            | GLI      |                          | - Transcription factor  
- Krüppel-like zinc finger protein  
- Activated by amplification  
- Gli1 modulates the expression of stemness genes and the self-renewal of CD133(+) glioma stem cells (GSCs) | Santoni et al. (2013), Yao et al. (2014) and Kinzler et al. (1987) |
| 13         | RB1      | Retinoblastoma protein    | - The RB signaling network is often disrupted in GBMs  
- Mutations in RB1 were observed in glioblastomas, particularly when tumors are wild type of cyclin dependent kinases  
- Chromosomal deletions in the region as the location RB gene are a common event in GBM (44%), but are less frequent in the classic subtype  
- Hypermethylation of promoter have been observed significantly more common in secondary glioblastomas than in primary glioblastomas | Caimcros et al. (1998), Badiali et al. (1993), Nakamura et al. (2001) and Gonzalez-Gomez et al. (2003) |
| 14q        | NFKBIA   | NFKB inhibitor alpha      | - Constitutive activation of NF-κB is frequently observed in GBMs  
- Monoallelic deletions in the chromosome 14q are detected in nearly 1/4 of GBM tumors  
- NFKBIA have a role in glioblastoma tumor suppression.  
- Because of the existence of NFKBIA deletions in some cancer stem cells of glioblastoma, these deletions may have occurred early in the glioblastoma pathogenesis. | Consortium, E. C. T. S (1993), Josefa Bello et al. (1994) and Bredel et al. (2011) |
Table 1. (continued)

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Gene</th>
<th>Product</th>
<th>Features</th>
<th>References</th>
</tr>
</thead>
</table>
| 17         | TP53(17p) | Fig. 1 | • Loss of *NFKBIA* can be related with progression of disease and recurrence of tumor  
• Chromosome 17p loss is an early and common event in astrocytomas  
• Losses are frequently accompanied by TP53 gene mutation  
• Mutations of *TP53*:  
  o Are the earliest detectable genetic change and most common to formation of secondary glioblastoma  
  o Present in 60% of precursor low-grade astrocytomas.  
  o Are well recognized in glioblastoma multiform (GBMs) tumors (specifically tumors lacking amplification of EGFR and from a proneural subtype)  
• Glial tumors incidence in the patients with Li–Fraumeni syndrome proposed the important role of the TP53 gene in the formation of sporadic gliomas  
• TP53 inactivation may not be an mandatory step in tumor development  
• Aberrant expression or increased of p53 has been detected in many astrocytic tumors (29% of grade 2 tumors and 49% of grade 3–4 astrocytomas) | Kyritsis et al. (1994), Sameshima et al. (1992), van Meyel et al. (1994), Karamitopoulou et al. (1993), Ohgaki and Kleihues (2007) and Chung et al. (1991) |
| 17         | NF1(17q) | Fig. 1 | Neurofibromin 1 (NF1) Loss leads to RAS hyperactivation  
• Mutations are found in 17% of GBMs  
• 15% to 20% of affected persons with Neurofibromatosis 1 develop astrocytomas | Obremski et al. (1998), See et al. (2012) and Lau et al. (2000) |
| 19         |  |  | • Loss of heterozygosity on chromosome 19p is a frequent change in astrocytomas  
• Alterations on chromosome 19q (involving 19q13.2–q13.4) are less frequently related to the astrocytomas development | Ritland et al. (1995), Nakamura et al. (2000) and von Deimling et al. (1994) |
| 22         |  |  | • Chromosome 22 gain and loss have been found in malignant gliomas  
• In chromosome 22q12 region a novel amplification site was mapped  
• Two separate loci affected by regional gains have been identified by array-CGH analysis that contained two candidate genes: *TOP3B* and *TAFA5* | Neumann et al. (1992), Bigner et al. (1990) and de Stahl et al. (2005) |

DMBT1, deleted in malignant brain tumors 1; EGFR, epidermal growth factor receptor; GBM, glioblastoma multiforme; IDH, isocitrate dehydrogenase, MDM2, murine double minute 2; PDGFRα, platelet derived growth factor receptor alpha.
homologous deletions and lack of expression in various malignancies such as medulloblastoma, glioblastoma multiforme, lung, and gastrointestinal cancers, has introduced it as a tumor suppressor gene (Wu et al. 1999).

In a study, Mueller et al. (2002) indicated that the rare mutations in DMBT1 are associated with astrocytic gliomas. They used mutational analysis of coding region of DMBT1, using direct DNA sequencing and single-

Fig. 2 Production of R-2HG as a result of activity of IDH1 mutated gene and the effects of activity R-2HG on various cellular functions. Mechanisms involved in tumorigenesis induced by the mutation of IDH1. Wild type of IDH1 (wtIDH1) isoform presents in the cytosol and in a normal conditions, convert cytosolic isocitrate into α-KG. Converting of wt IDH1 to mutant IDH1 (mIDH1) can be resulted in α-KG conversion to R-enantiomer of 2-hydroxyglutarate (R-2HG). In addition, this mutation can decrease the affinity of active site of IDH1 enzyme for isocitrate and increases it for nicotinamide adenine dinucleotide phosphate and α-KG. R-2-HG as an ‘onco-metabolite’ encourages tumorigenesis process through three pathways. (1) R-2HG by inhibiting Eg1N (an α-KG dependent prolyl hydroxylases (PHD) that causes the hydroxylation of proline residues in HIF1-α and its degradation by von-Hippel Lindau protein (VHL)) resulted in persistence of HIF1-α and transcription of factors induces by it. (2) Other changes caused by R-2HG are epigenetic alterations. These modifications can be made at two levels: DNA and Histones. Tet methylcytosin dioxygenase 2 (TET2) is a DNA modifying enzyme that is α-KG -dependent and its inhibition may cause DNA hypermethylation (DNA level). Some of the histone demethylases are α-KG -dependent. R-2HG as a competitive inhibitor causes histones hypermethylation (Histone level). (3) The process of changing immature type IV collagen to mature collagen requires α-KG–dependent PHD for post-translational modifications. Inhibition of this reaction can cause accretion of misfolded collagen in the ER and activating an ER stress response. Moreover, deficiency of perivascular type IV collagen may encourage failure of the physiological BBB in gliomas with mutated IDH1.

In a study, Mueller et al. (2002) indicated that the rare mutations in DMBT1 are associated with astrocytic gliomas. They used mutational analysis of coding region of DMBT1, using direct DNA sequencing and single-
stranded conformation polymorphism analysis 79 patients with astrocytic gliomas. Their results revealed that there were five somatic mutations which two of them led to an amino acid exchange. One pilocytic astrocytoma had two missense mutations and another pilocytic astrocytoma carried a somatic mutation which not affecting the presumed protein. Moreover, there were observed 21 of the 27 single nucleotide polymorphisms in patients with astrocytic gliomas. These results suggested that mutation in DMBT1 could be related to appearance of astrocytic gliomas (Mueller et al. 2002).

Conclusion

Astrocytic gliomas among the most important CNS tumors and are associated with a significant disease burden worldwide. Astrocytic glioma is a complex disease and a variety of internal and external risk factors could be related to its initiation and progression. Among various risk factors, deregulation of various mechanisms which could lead to up/down regulation of genes such as p53, MGMT, EGFR, and MDM2, has a critical role in the progression of astrocytic gliomas. It seems that identification of underlying molecular mechanisms related to astrocytic gliomas could contribute to a better understanding of the pathogenesis and identification of more effective therapeutic strategies.

Acknowledgments and conflict of interest disclosure

The authors acknowledge Research Council and School of Medicine of Mashhad University of Medical Sciences and Research Council and School of Medicine of Iran University of Medical Sciences for their financial support. The authors have no conflict of interest to disclose.

References


increased signaling through the phosphatidylinositol-3 kinase/ AKT pathway and promotes radiosensitivity in cells of astrocytic origin. Oncogene 23, 4594.


