Comparing the Impacts of Topical Chlorhexidine and Dry Cord Care on Umbilical Cord Separation Time among Neonates

Fatemeh Abbaszadeh, Zeynab Hajizadeh¹, Parisa Seraji², Zohreh Sadat³

Background: Delayed umbilical cord separation (UCS) can increase the risk of infection. Therefore, cord care is of great importance. Objectives: This study aimed to compare the impacts of topical chlorhexidine and dry cord care on UCS time. Methods: In this quasi-experimental study, 174 neonates were recruited from two teaching hospitals affiliated to Kashan University of Medical Sciences, Kashan, Iran. They were assigned to chlorhexidine and dry cord care groups. In the first group, 4% chlorhexidine solution was applied to the cord stump 3 h after birth and then every 12 h until 2 days after cord separation. The mothers of neonates in the dry cord care group were recommended to avoid using any material on the cord stump. The signs of cord stump infection were assessed by mothers on a daily basis and also by the second author at four-time points, namely, 3 h after birth (in hospital), 3 and 7 days after birth (through home visits), and 2 days after cord separation (through home visits). UCS time was documented by mothers. The Chi-square and the independent-samples t-tests were used to analyze the data. Results: UCS time in the chlorhexidine group was significantly longer than the dry cord care group (13.28 ± 6.79 vs. 7.85 ± 2.51 days; P < 0.001). The longest separation time in these groups was 53 and 17 days, respectively. There were no significant differences between the groups with regard to infection signs, namely, discharge, redness, foul odor, inflammation, and swelling (P > 0.05). Conclusion: Dry cord care not only is as effective as topical use of chlorhexidine in preventing cord stump infection but also is associated with shorter cord separation time.

Keywords: Chlorhexidine, Infection, Neonatal care, Umbilical cord

INTRODUCTION

Umbilical cord separation (UCS) normally occurs in the first 2 weeks after birth. Delayed UCS, particularly after 1 month, is associated with different complications such as bacterial infection, neutrophil chemotaxis disorders,[1] and unnecessary postpartum care and visits.[2] Necrotic tissue of the cord is a good environment for bacterial growth and in case of delayed UCS and poor umbilical cord care; it can become rapidly infected.[3] Infection, in turn, is among the leading causes of neonatal mortality. For example, tetanus causes around 300,000 neonatal deaths per year in the world, while one of the most common sources of tetanus infection is umbilical cord infections.[4]

Umbilical cord care is performed through different antiseptic powders and solutions. The most commonly used powders are zinc oxide, talcum, starch, alum, hexachlorophene, and chlorhexidine, while the most commonly used solutions are alcohol, triple sulfa, tincture of iodine, silver sulfadiazine, and chlorhexidine.[5] However, there is no consensus over the most effective agent for cord care. The World Health Organization recommended dry cord care when the mother and the midwife can observe the stump daily for about 3 days. The World Health Organization recommended dry cord care when the mother and the midwife can observe the stump daily for about 3 days.

Address for correspondence: Dr. Zohreh Sadat, Trauma Nursing Research Center, Kashan University of Medical Sciences, Kashan, Iran. E-mail: sadat@kaums.ac.ir

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Abbaszadeh F, Hajizadeh Z, Seraji P, Sadat Z. Comparing the impacts of topical chlorhexidine and dry cord care on umbilical cord separation time among neonates. Nurs Midwifery Stud 2018;7:62-6.
Objectives
This study aimed to compare the impacts of topical chlorhexidine and dry cord care on UCS time.

Methods
Design and participants
This was a quasi-experimental study. Study participants were 174 neonates recruited from two teaching hospitals affiliated to Kashan University of Medical Sciences, Kashan, Iran. Inclusion criteria were a gestational age of 37–42 weeks, 1- and 5-min Apgar scores of more than seven, residence in Kashan, intact membranes or membrane rupture for <12 h at birth, and no perinatal asphyxia, respiratory distress, congenital disease or deformity, and any other problem requiring immediate hospitalization in neonatal Intensive Care Unit. Neonates were excluded if they or their mothers developed any disorder or disease that interfered with cord care according to the study protocol or their mothers did not adhere to the recommended cord care method.

Sample size was calculated using the findings of a study by Sharma and Gathwala, who examined the effects of chlorhexidine on UCS time and reported that the means of UCS times in their control and chlorhexidine groups were 10.31 ± 3.23 and 8.92 ± 2.77 days, respectively.[17] Then, considering Type I and II errors of, respectively, 0.05 and 0.2 and \(\sigma_1 = 3.23, \sigma_2 = 2.77, \mu_1 = 10.31, \mu_2 = 8.92 \), sample size for each group was estimated to be 74. However, given the potential withdrawal of participants from the study, sample size was expanded to 87.

Intervention and data collection
Neonates were alternatively allocated to chlorhexidine and dry cord care groups. Accordingly, in the 1st week of the study, all newly-born eligible neonates were allocated to the chlorhexidine group while in the 2nd week all neonates were allocated to the dry cord care group. This weekly alternation process was repeated until 87 neonates were recruited to each group. This type of allocation was used to prevent the communication of neonates’ mothers in the dry cord care group with those in the chlorhexidine group.

The primary outcome of the study was UCS whereas the secondary outcomes were the signs of infection, namely, redness, discharge, foul odor, inflammation, and swelling. A demographic and perinatal characteristics questionnaire and a cord stump assessment checklist were used for data collection. The questionnaire contained six items on neonate’s gender, mothers’ age, educational and employment status, vaccination against tetanus, and route of delivery. The checklist was used for the daily assessment of the signs of umbilical cord infection such as discharge, redness, foul odor, inflammation, and swelling. Moreover, it contained an item on the exact times of topical application of chlorhexidine. The content validity of the questionnaire and the checklist were assessed and confirmed by ten nursing and midwifery faculty members.

During the first 3 h after birth, a training session was held for each mother to inform her about the importance of umbilical cord care and the signs of cord stump infection. Moreover, mothers in the chlorhexidine group were taught to provide cord care using 4% chlorhexidine solution (Hydrex, Ecolab Co., Germany) as follows:
1. Soak a cotton swab in chlorhexidine through placing it in the orifice of the chlorhexidine bottle and inverting the bottle
2. Rub the soaked swab thoroughly on the skin surrounding the cord stump
3. Soak another swab in chlorhexidine in the same way and clean the tip of the stump (if the cord has not yet been separated) or the center of the cord stump (if the cord has been separated).

Mothers in both groups were asked to use the infection assessment checklist for daily assessment of the cord stump for the signs of infection until 2 days after UCS. Besides mothers, the second author also performed infection assessments, either in hospital or through home visits, at four time points, namely, during the first 3 h after birth (in hospital), three and 7 days after birth (through home visits), and 2 days after UCS (through home visits). Neonates were immediately visited by a neonatologist in case of any delay in UCS (i.e., a UCS time longer than 2 weeks) and any cord-related problems such as blood leakage, mucoid discharge, and granuloma formation. Mothers in the
chlorhexidine group were also taught to document the exact time of daily application of chlorhexidine. Moreover, during the first 3 h after birth, a swab sample was collected from the stump for microbial culture.

Ethical considerations

This study gained the approval of the Ethics Committee of Kashan University of Medical Sciences, Kashan, Iran (the approval code: 8922). It was also registered in the Iranian Registry of Clinical Trials (the registration number: IRCT201010285038N1). We informed the participating mothers about the aim and the process of the study, their absolute right to voluntarily withdraw from the study, and the confidential management of their personal information. Then, we obtained their written informed consents.

Data analysis

The SPSS software (v. 13.0; SPSS Inc., Chicago, IL, USA) was used to analyze the data. The Kolmogorov–Smirnov test revealed that the distribution of all variables was normal. The Chi-square and the independent-sample t-tests were used to compare the groups respecting demographic characteristics and UCS time. $P < 0.05$ was regarded as statistically significant.

RESULTS

A total of 174 neonates were recruited. Five neonates from the chlorhexidine and four from the dry cord care groups were excluded due to reasons such as respiratory distress, perinatal asphyxia, use of other cord care agents, or nonadherence to study protocol [Figure 1]. All neonates were born in baby-friendly hospitals with rooming-in policy. The umbilical cords of all neonates had been cut using sterile technique in the delivery room without the use of any antiseptic agent on the stump. Moreover, all mothers had received complete vaccination against tetanus. No significant differences were found between the groups respecting mothers’ and neonates’ characteristics ($P > 0.05$), [Table 1], the signs of cord stump infection ($P > 0.05$), [Table 2], the frequency of medical visits ($P = 0.325$), and the presence of microorganisms in the cord stump in the first 3 h after birth ($P = 0.281$). However, compared with the dry cord care group, UCS time in the chlorhexidine group was significantly longer ($P < 0.001$), [Table 3].

DISCUSSION

The findings of this study showed that UCS time in the chlorhexidine group was significantly longer than the dry cord care group. The longest UCS time in the chlorhexidine and the dry cord care groups was 53 and

Table 1: Between-group comparisons of mother’s and neonate’s characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Group</th>
<th>P^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-24</td>
<td>27 (32.9)</td>
<td>0.693</td>
</tr>
<tr>
<td>25-29</td>
<td>29 (35.4)</td>
<td></td>
</tr>
<tr>
<td>30-34</td>
<td>16 (19.5)</td>
<td></td>
</tr>
<tr>
<td>35 and more</td>
<td>10 (12.2)</td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>27.20 ± 5.14</td>
<td>0.437</td>
</tr>
<tr>
<td>Mother’s educational status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate and primary</td>
<td>12 (14.6)</td>
<td>0.595</td>
</tr>
<tr>
<td>Guidance school</td>
<td>16 (19.5)</td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>39 (47.6)</td>
<td></td>
</tr>
<tr>
<td>University</td>
<td>15 (18.3)</td>
<td></td>
</tr>
<tr>
<td>Mother’s employment status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>75 (91.5)</td>
<td>0.161</td>
</tr>
<tr>
<td>Employed</td>
<td>7 (8.5)</td>
<td></td>
</tr>
<tr>
<td>Neonate’s gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>46 (56.1)</td>
<td>0.185</td>
</tr>
<tr>
<td>Female</td>
<td>36 (43.9)</td>
<td></td>
</tr>
<tr>
<td>Route of delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal delivery</td>
<td>42 (51.2)</td>
<td>0.121</td>
</tr>
<tr>
<td>Cesarean section</td>
<td>40 (48.8)</td>
<td></td>
</tr>
</tbody>
</table>

aThe results of the Chi-square test, bResult of t-test. SD: Standard deviation

Table 2: Between-group comparisons of the signs of local infection at cord stump site

<table>
<thead>
<tr>
<th>Infection signs</th>
<th>Group</th>
<th>P^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>34 (41.5)</td>
<td>0.342</td>
</tr>
<tr>
<td>Redness</td>
<td>17 (20.7)</td>
<td>0.807</td>
</tr>
<tr>
<td>Foul odor</td>
<td>1 (1.2)</td>
<td>0.445</td>
</tr>
<tr>
<td>Inflammation and swelling</td>
<td>9 (11)</td>
<td>0.918</td>
</tr>
</tbody>
</table>

bSome of the infants had no sign. bThe results of the Chi-square test
Topical applications of chlorhexidine to the umbilical cord stump infection. In other words, topical use of chlorhexidine not only has no advantage over dry cord care but also is associated with longer UCS time.

Acknowledgment

We would like to thank all participants of the study as well as the Research Administration of Kashan University of Medical Sciences, Kashan, Iran, for its supports.

Financial support and sponsorship

Nil.

Conflicts of interest

This study was funded by the Research Administration of Kashan University of Medical Sciences, Kashan, Iran.

REFERENCES

Abbaszadeh, et al.: Topical chlorhexidine and umbilical cord separation time

